RELATIVE SPECIES RICHNESS AND COMMUNITY COMPLETENESS: BIRDS AND URBANIZATION IN THE MID-ATLANTIC STATES

2000 ◽  
Vol 10 (4) ◽  
pp. 1196-1210 ◽  
Author(s):  
Emmanuelle Cam ◽  
James D. Nichols ◽  
John R. Sauer ◽  
James E. Hines ◽  
Curtis H. Flather
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel N. Mahiga ◽  
Paul Webala ◽  
Mugo J. Mware ◽  
Paul K. Ndang’ang’a

Few studies have explored how human land uses influence and support persistence of forest biodiversity in central Kenya. In the case of the Mount Kenya ecosystem, farmlands and plantation forests are significant land-use types. Using point counts, we assessed bird communities in natural forests, plantation forests, and farmlands in the Nanyuki Forest Block, Western Mount Kenya. Bird point counts were undertaken during two sampling periods (wet and dry season). Compared to farmlands and plantation forest, natural forest had the highest overall avian species richness and relative species richness of all except one forest-dependent foraging guild (granivores) and nonforest species, which occurred frequently only on farmlands. Plantation forest had the lowest relative richness of all avian habitat and foraging guilds. Conversely, specialist forest-dependent species mainly occurred in the structurally complex remnant natural forest. Our study underscores the importance of remnant natural forests for the persistence and conservation of forest biodiversity and risks posed by replacing them with plantation forests and farmlands.


2011 ◽  
Vol 77 (17) ◽  
pp. 6109-6116 ◽  
Author(s):  
Andrea Bannert ◽  
Kristina Kleineidam ◽  
Livia Wissing ◽  
Cornelia Mueller-Niggemann ◽  
Vanessa Vogelsang ◽  
...  

ABSTRACTIn many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 and 2,000 years of paddy soil management compared to findings for a tidal wetland. Changes in abundance and diversity of the functional groups could be observed, reflecting the different chemical and physical properties of the soils, which changed in terms of soil development. The tidal wetland was characterized by a low microbial biomass and relatively high abundances of ammonia-oxidizing microbes. Conversion of the tidal wetlands into paddy soils was followed by a significant increase in microbial biomass. Fifty years of paddy management resulted in a higher abundance of nitrogen-fixing microbes than was found in the tidal wetland, whereas dominant genes of nitrification and denitrification in the paddy soils showed no differences. With ongoing rice cultivation, copy numbers of archaeal ammonia oxidizers did not change, while that of their bacterial counterparts declined. ThenirKgene, coding for nitrite reductase, increased with rice cultivation time and dominated its functionally redundant counterpart,nirS, at all sites under investigation. Relative species richness showed significant differences between all soils with the exception of the archaeal ammonia oxidizers in the paddy soils cultivated for 100 and 300 years. In general, changes in diversity patterns were more pronounced than those in functional gene abundances.


2006 ◽  
Vol 38 (4) ◽  
pp. 331-353 ◽  
Author(s):  
Silvia STOFER ◽  
Ariel BERGAMINI ◽  
Gregorio ARAGÓN ◽  
Palmira CARVALHO ◽  
Brian J. COPPINS ◽  
...  

Changing land use has a major impact on lichen diversity. This study attempts to identify patterns or trends of lichen functional groups along a land use gradient, ranging from natural forests to open agricultural landscape. In eight countries, covering six main European biogeographic regions, lichen vegetation was assessed according to a standardized scheme. Data on reproductive, vegetative and ecological traits was compiled and relative species richness for all classes of all traits calculated. Relationships between the land use gradient and relative species richness of trait classes were analysed. Open and intensively managed landscapes harbour more fertile species while sterile species are relatively more important in forests. This finding is also supported by analyses of different classes of dispersal propagules. The importance of species with the principal photobiont Trebouxia s.l. increases linearly with intensification of land use. A converse pattern is revealed by species with Trentepohlia. Concerning substratum specialization only generalists show an effect along the land use intensity gradient. Their relative species richness decreases from landscapes dominated by forests to open agricultural landscape. A considerable decline in the rare lichen species richness as a result of land intensification is predicted.


2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


2019 ◽  
Author(s):  
Federico Morelli ◽  
Yanina

ContextThe negative association between elevation and species richness is a well-recognized pattern in macro-ecology. ObjectivesThe aim of this study was to investigate changes in functional evenness of breeding bird communities along an elevation gradient in Europe. MethodsUsing the bird data from the EBCC Atlas of European Breeding Birds we estimated an index of functional evenness which can be assumed as a measure of the potential resilience of communities.ResultsOur findings confirm the existence of a negative association between elevation and bird species richness in all European eco regions. However, we also explored a novel aspect of this relationship, important for conservation: Our findings provide evidence at large spatial scale of a negative association between the functional evenness (potential community resilience) and elevation, independent of the eco region. We also found that the Natura2000 protected areas covers the territory most in need of protection, those characterized by bird communities with low potential resilience, in hilly and mountainous areas.ConclusionsThese results draw attention to European areas occupied by bird communities characterized by a potential lower capacity to respond to strong ecological changes, and, therefore, potentially more exposed to risks for conservation.


2009 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
T. Sinkovč

The botanical composition of grasslands determines the agronomic and natural values of swards. Good grassland management usually improves herbage value, but on the other hand it frequently decreases the plant diversity and species richness in the swards. In 1999 a field trial in a split-plot design with four replicates was therefore established on the Arrhenatherion type of vegetation in Ljubljana marsh meadows in order to investigate this relationship. Cutting regimes (2 cuts — with normal and delayed first cut, 3 cuts and 4 cuts per year) were allocated to the main plots and fertiliser treatments (zero fertiliser — control, PK and NPK with 2 or 3 N rates) were allocated to the sub-plots. The results at the 1 st cutting in the 5 th trial year were as follows: Fertilising either with PK or NPK had no significant negative effect on plant diversity in any of the cutting regimes. In most treatments the plant number even increased slightly compared to the control. On average, 20 species were listed on both unfertilised and fertilised swards. At this low to moderate level of exploitation intensity, the increased number of cuts had no significant negative effect on plant diversity either (19 species at 2 cuts vs. 20 species at 3 or 4 cuts). PK fertilisation increased the proportion of legumes in the herbage in the case of 2 or 3 cuts. The proportion of grasses in the herbage increased in all the fertilisation treatments with an increased numbers of cuts. Fertiliser treatment considerably reduced the proportion of marsh horsetail ( Equisetum palustre ) in the herbage of the meadows. This effect was even more pronounced at higher cut numbers. The proportion of Equisetum palustre in the herbage was the highest in the unfertilised sward with 2 cuts (26.4 %) and the lowest in the NPK-fertilised sward with 4 cuts (1.4%).


Author(s):  
M. A. Gondal ◽  
S. Iqbal ◽  
U. Atique ◽  
N. U. Saher ◽  
N. A. Qureshi ◽  
...  

Abstract The primary objective of this study was to investigate the seasonal fish and crustacean variations concerning taxonomic composition, species richness, and diversity in sandy beach habitat. For this purpose, we investigated the Sonmiani Hor lagoon area during four distinct seasons, i.e., northeast (NE) monsoon, pre-monsoon, south-west (SW) monsoon, and post-monsoon for one year. During each haul, the net was pulled about 100m along the beach in 0.5m depth. The results showed a strong linear correlation between the diversity index and equitability in fishes (r = 0.978). The diversity index was strong negatively correlated with the abundance and biomass (r = -0.978, -0.972, respectively). The physical attributes like sea surface water temperature and salinity showed a strong negative effect on species assemblages (r = -0.981 and -0.943, respectively). The mean air and water temperature illustrated approximately 3°C difference during NE and pre-monsoon seasons. However, salinity, pH, and electrical conductivity did not show any significant seasonal variabilities. Under the ecological indices, the fish species displayed higher diversity (H’ = 3.19) during SW monsoon, whereas the lowest diversity was observed during pre-monsoon (H’ = 1.58). The equitability and species richness, however, remained more noticeable during SW monsoon (J’ = 0.81). The total number of individuals of fish and crustaceans reached 4799 with 3813 fish individuals and 986 individuals of crustaceans. A total of 27 families of fish while five crustacean families comprising of 30 genera and 38 fish species while ten genera and 17 species of crustaceans were recorded. Liza subviridis displayed the highest abundance among the sampled fish species. In conclusion, fish species constituted a significant part of the coastal fauna in the study area. The seasonal variations displayed distinct variations in fish species composition and diversity.


Sign in / Sign up

Export Citation Format

Share Document